
Building an Explainable Graph-based Biomedical Paper
Recommendation System

Hermann Kroll
krollh@acm.org

Institute for Information Systems,
TU Braunschweig

Germany

Christin K. Kreutz
ckreutz@acm.org

TH Mittelhessen & Herder Institute
Germany

Bill Matthias Thang
m.thang@tu-bs.de

Institute for Information Systems,
TU Braunschweig

Germany

Philipp Schaer
philipp.schaer@th-koeln.de

TH Köln (University of Applied
Sciences)
Germany

Wolf-Tilo Balke
balke@ifis.cs.tu-bs.de

Institute for Information Systems,
TU Braunschweig

Germany

Abstract
Digital libraries provide different access paths, allowing users to
explore their collections. For instance, paper recommendation sug-
gests literature similar to some selected paper. Their implementa-
tion is often cost-intensive, especially if neural methods are applied.
Additionally, it is hard for users to understand or guess why a rec-
ommendation should be relevant for them. That is why we tackled
the problem from a different perspective. We propose XGPRec, a
graph-based and thus explainable method which we integrate into
our existing graph-based biomedical discovery system. Moreover,
we show that XGPRec (1) can, in terms of computational costs, man-
age a real digital library collection with 37M documents from the
biomedical domain, (2) performs well on established test collections
and concept-centric information needs, and (3) generates explana-
tions that proved to be beneficial in a preliminary user study. We
share our code so that user libraries can build upon XGPRec.

Keywords
Explainable Paper Recommendation, Biomedical Document Re-
trieval, System Design, User Interface, Digital Libraries

1 Introduction
This article is the short version of our technical report [8]. Digital
libraries provide effective access paths for users to explore their
underlying collections. This vast number of publications to look at
combined with possibly under-specified information needs of users
can lead to challenges when trying to find related work for a topic of
interest as keyword-based options are insufficient [6]. As a remedy,
paper recommendation systems suggest related literature based on
some user’s selected article(s) [3, 18]. We focus on the following
task definition for paper recommendation: Given an initial article,
what are other relevant articles with regard to the input article?

Current paper recommendation systems do not focus on limit-
ing computational complexity or performing the task with fewer
resources, even though the emissions produced by neural retrieval
methods are several orders of magnitude higher than those of
BM25 [16]. Many methods rely on cost-intensive deep learning [6].
In practice, the computational costs of neural retrieval methods and
the collection of representative training data usually hinder their

implementation in a digital library. Another understudied issue
but desirable goal in paper recommendation is explainability [6].
Explanations are helpful to (1) justify individual recommendations,
(2) understand how a system works, and (3) distinguish good from
bad recommendations via users’ feedback [1].

We tackled the two issues of high costs (in terms of retrieval
and training data collection) and missing explainability by build-
ing upon graph-based document representations in cooperation
with PubPharm, the specialized service for Pharmacy (some of this
paper’s authors are part of the PubPharm team). In addition to
keyword-based retrieval, PubPharm offers a graph-based discovery
system called the Narrative Service1 as a more sophisticated access
path for users. The Narrative Service allows users to formulate
their searches as narrative query graphs, i.e., as short stories of
interest involving relevant biomedical concepts and their interac-
tions. The service comes with two central advantages [10]: precise
literature retrieval and structured overviews of the literature when
using variables, e.g., structuring the literature by possible treatment
options in adults with diabetes. We expand our and PubPharm’s
existing Narrative Service and provide more functionality to our
users. We design and implement an explainable paper recommenda-
tion system (a demo video is available at2), called XGPRec. Graph
representations can visualize complex interconnections and enable
users from the biomedical domain to immediately grasp if a paper
fits what they mean to find [7]. In this work, we focus on justifying
recommendations [1], which we achieve by displaying overlap-
ping graph patterns between an initial and a candidate paper to
explain recommendations for users. We demonstrate XGPRec at the
showcase of a real digital library collection, namely the extensive
MEDLINE document collection with about 37 million documents.
Our research objective for this work is thus: How can we design a
fast, reliable and explainable paper recommendation system? Our
code is available at GitHub3 and Software Heritage4. In this work,
we focus on central findings of our research. A discussion about
related work and details our system and evaluation can be found
in our corresponding technical report [8].

1https://narrative.pubpharm.de
2https://youtu.be/oLZFCtVuQWU
3https://github.com/HermannKroll/NarrativeRecommender/
4Software Heritage ID:swh:1:dir:eaeaac5c6a9ccb00542431398e43dec34d910faf

https://orcid.org/0000-0001-9887-9276
https://orcid.org/0000-0002-5075-7699
https://orcid.org/0009-0006-8321-8479
https://orcid.org/0000-0002-8817-4632
https://orcid.org/0000-0002-5443-1215
https://narrative.pubpharm.de
https://youtu.be/oLZFCtVuQWU
https://github.com/HermannKroll/NarrativeRecommender/
https://archive.softwareheritage.org/swh:1:dir:eaeaac5c6a9ccb00542431398e43dec34d910faf

Kroll et al.

Figure 1: Screenshot of our prototypical system: The gen-
erated explanation why the candidate document should be
relevant to the input document is shown. Shared information
(nodes and edges) are visualized with colors whereas infor-
mation that is added by the candidate document is visualized
as dashed lines and not colored nodes.

2 Narrative Service – Graph-based Discovery
PubPharm’s graph-based retrieval service, called the Narrative Ser-
vice [10], allows users to express their information need as a nar-
rative query graph, i.e., graph patterns with triple-like statements
(concept, interaction, concept). A query is then answered by docu-
ments that contain the search graph pattern. For the query process-
ing step, they transformed texts into graphs by detecting relevant
concepts and extracting their interactions. Concepts were identified
by deriving annotations from the PubTator service [19, 20] and per-
forming a dictionary-based concept linking through vocabularies
derived from ChEBML [14], Wikidata [17] and the Medical Subject
Headings. Statements (concept interactions) were extracted by us-
ing PathIE and a sentence-based extraction method that extracts
general association statements if two concepts were mentioned
within the same sentence. Briefly, PathIE extracted a statement
between two concepts if two detected concepts were connected
on the dependency parse of a sentence (basically the grammatical
structure) derived with the Stanford CoreNLP toolkit [13]. Details
about the extraction methods have already been published in [9]
and [10]. The methods’ and system’s code is freely available5,6. The
discovery system currently features around 37 million publications
from the MEDLINE collection and 70k COVID-19 pre-prints from
ZB MED’s preVIEW service [11].

3 Graph-based Recommendation and
Explanation

The discovery system contains a set of documents D [10]. A docu-
ment 𝑑 ∈ D is represented by its text 𝑑text (title and abstract), a list
of concept annotations 𝑑concepts and a list of extracted statements
𝑑statements. A concept annotation maps a specific text span of 𝑑 to

5https://github.com/HermannKroll/NarrativeIntelligence
6Software Heritage ID:swh:1:dir:9e2435bb03d544039cc96fa1b17537050faec6e3

a pre-known concept of the concept vocabulary C (the set of all
known concepts by the system). Concepts are identified by pre-
cise IDs and a type, e.g., drug or disease. An extracted statement
is composed of a subject-predicate-object triple, e.g., (Metformin,
treats, Diabetes), the sentence it was extracted from, and a con-
fidence value (how good the extraction was based on some NLP
method). Sect. 2 contains details about applied methods and details.
The document graph of 𝑑 is the set of subject-predicate-object
triples extracted from the document. A document graph is given by
graph(𝑑) = (𝑉 , 𝐸) where 𝑉 is the set of nodes (detected concepts)
and 𝐸 is a set of concept interactions (triples). This paper aims to
reuse our existing document graph representation [10] to perform
a reliable and explainable paper recommendation; see Figure 1.

Task Definition (Explainable Paper Recommendation):
Given an input document 𝑑 , compute a ranked list of documents
⊆ D. For each document 𝑑𝑖 in that list provide an explanation 𝑒𝑖 of
why 𝑑𝑖 is related to the input 𝑑 .

3.1 Scoring Document Graph Components
First, we score the nodes and edges of a document graph to know
which parts are the most important by using three distinct features.

Tf-idf. Some graph nodes or edges might carry more informa-
tion (are more relevant) than very general ones. In information
retrieval, term-frequency tf and inverse-document-frequency idf
are two paradigms used to determine a term’s relevance concerning
a document 𝑑 . We follow that paradigm and design a tf-idf score for
nodes and edges. We define tf for a concept 𝑐 within a document 𝑑
as tf(𝑐, 𝑑) = #(𝑐,𝑑)

#𝐶 with #(𝑐, 𝑑) being the number of occurrences of
concept 𝑐 within 𝑑 and #C being the number of all annotated con-
cepts within 𝑑 (for normalization). Next, we define idf for a concept
𝑐 as idf(𝑐) = log |D |

| {𝑑∈D∧𝑐∈𝑑 } | . |D| is the number of documents in
our collection, and the denominator counts documents that include
the concept 𝑐 . With that, we can score nodes with tf-idf as follows:

n-tf-idf(𝑛,𝑑) = 𝑡 𝑓 (𝑛,𝑑) · idf(𝑛). (1)

For edges, we faced issues when maintaining an idf index: First,
the index can get quite large (quadratic growth with regard to
the size of the concept vocabulary). Second, our statement ex-
traction methods are restricted to sentence levels and might be
error-prone [10]. Many connections might be lost during that step,
affecting the idf score. That is why we decided to approximate the
tf-idf-score for an edge by combining the tf-idf scores of its subject
and object plus multiplying it with a predicate specificity (basically
a score determining how specific a predicate is: treats is more spe-
cific than a general association). We define the tf-idf score for an
edge 𝑒 = (𝑠, 𝑝, 𝑜) concerning a document 𝑑 as:

e-tf-idf(𝑒, 𝑑) = (n-tf-idf(𝑠, 𝑑) + n-tf-idf(𝑜, 𝑑)) · specificity(𝑝) (2)

Coverage. The discovery system is designed for biomedical ab-
stract retrieval. Each abstract typically starts with some background
information in the corresponding field. Concept mentions within
that background part might be less important than concepts men-
tioned across the whole abstract. We therefore define coverage of a
node (concept) 𝑛 within a document 𝑑 as:

https://github.com/HermannKroll/NarrativeIntelligence
https://archive.softwareheritage.org/swh:1:dir:9e2435bb03d544039cc96fa1b17537050faec6e3

Building an Explainable Graph-based Biomedical Paper Recommendation System

n-coverage(𝑛,𝑑) = last_position(𝑛,𝑑) − first_position(𝑛,𝑑)
text_length(𝑑) (3)

The method calculates the difference between the concept’s last
mention and the first mention within the document and normalizes
it by its text length. Coverage approximates whether the concept is
used from the beginning to the end or brieflymentioned somewhere
as a side note. The higher the coverage is, the more relevant a
concept 𝑐 should be. We then define the coverage of a document
graph’s edge 𝑒 = (𝑠, 𝑝, 𝑜) as:

e-coverage(𝑒, 𝑑) = min({n-coverage(s), n-coverage(o)}) . (4)

Confidence. As mentioned, our extraction methods come with
a confidence score, i.e., a score of how sure the tool is about the
corresponding extraction. Please note that a document graph’s
edge could be extracted from different sentences within 𝑑 . The
confidence for an edge 𝑒 is defined as the maximum confidence
value of the statement extractions within 𝑑statements that support 𝑒 .
We do not have confidence values for concept annotations because
the detection methods are dictionary-based linking methods that
perform a binary decision.

Scoring. Finally, we can define the scores of nodes and edges.
Coverage and tf-idf are combined to compute the score for each
node: n-score(𝑛,𝑑) = n-coverage(𝑛,𝑑) · n-tf-idf(𝑛,𝑑)

For edges, we combine confidence, coverage, and tf-idf:

e-score(𝑒, 𝑑) = confidence(𝑒, 𝑑) · e-coverage(𝑒, 𝑑) · e-tf-idf(𝑒, 𝑑) (5)

Graph Cores. With our previous scoring functions, we can
now determine the relevance of different components of each doc-
ument graph. For instance, the statement extraction step might
yield multiple edges (with different predicates) between two nodes,
e.g., a general association and a specific treats predicate. For our
recommendation step, we filter the graphs by only keeping the
most relevant (best-scored) edge between two concepts and by only
keeping edges between different concept types, e.g., drug-disease
treatments. A graph core is a scored document graph (i.e., the
scoring functions have been applied to each node and edge) that
only keeps the best-scored edge between two nodes. The function
graph-core(𝑑) = 𝑑core takes a document and returns its core.

3.2 Candidate Retrieval (First Stage)
The discovery system contains about 37 million documents (as of
04/2024). Given some input document 𝑑 , comparing its core to that
of every other document is obviously too expensive. That is why
we headed for a two-step approach: A cheap first stage for initial
candidate retrieval and a more expensive second stage that utilizes
our graph cores and re-scores the candidate documents. Our three
first stages rely on the input document 𝑑 and work as follows: 1)
FSCore searches for documents that include the same edges as the
core of 𝑑 . 2) FSNode searches for documents that include the same
nodes as the core of𝑑 . 3) FSConcept searches for documents that the
same concepts as annotated in document 𝑑 . The more edges, nodes
or concepts a candidate document share, the better it is scored.

We restrict our first stages by a fixed cutoff value, 𝑘 , so we return
only the best-scored 𝑘 documents. If the score is equal, we sort
documents by their IDs in descending order as our systemmaintains

PubMed IDs and higher IDs usuallymean newer publications.While
BM25 computes nearly continuously distributed scores because it
also considers the tf-idf scores of terms within candidate documents,
our first stages come with a step function (either a component of
the input is contained or not). For instance, the documents between
rank 900 and 1200 could have the same score, as they contain the
same overlap to the input. For that, we propose a flexible cutoff
which considers the score at position 𝑘 and then cuts the list at the
next position the score drops again. We use a hard cutoff at 2 · 𝑘 in
any case, to have a maximum boundary.

3.3 Recommendation (Second Stage)
The first stage returns a list of candidate documents 𝐷candidates. For
our second stage, we compute each candidate document’s score
by comparing their cores to our input document. In brief, if the
input document does not have a core, we cannot compute scores
and consider all input documents as equally relevant. If the input
document has a core, we compare it to every core of the candidate
documents. The score for the candidate document is defined as the
sum of all edges shared between the input document core and the
candidate document’s core. An edge is considered as shared if it
connects the same concepts. This strategy, however, relies on the
existence of cores and the expression of relevant information in
these cores. This might not always be the case: First, extraction
methods are error-prone, i.e., relevant information might be lost.
Second, our concept vocabulary might not contain all relevant con-
cepts of that domain [10]. That is why we also integrate text-based
scoring to consider not-as-graph-expressed information. Here, we
use BM25 scoring by considering titles and abstracts. Let 𝑑𝑖 be the
input document and 𝑑𝑐 be some candidate document. We compute
the final score, as a weighted sum of the graph overlap and BM25:

XGPRec(𝑑𝑖 , 𝑑𝑐) = 𝑤graph ·core-overlap(𝑑𝑖 , 𝑑𝑐)+𝑤text ·𝐵𝑀25(𝑑𝑖 , 𝑑𝑐)
(6)

The core-overlap returns the score of the core overlap based on
our previous algorithm, and BM25 returns the BM25 score when
comparing the text (title plus abstract) of 𝑑𝑖 and 𝑑𝑐 . Note that we
normalize core-overlap and BM25 scores with regard to a candidate
document list 𝐷candidate so documents receive scores between [0,
1] which makes both scores comparable and combineable.

3.4 Explanation Generation
Our algorithm takes an input document, some candidate document,
and a parameter 𝑙 as its input. The parameter 𝑙 determines the
length of the explanation to generate. Our idea is to take 𝑙 edges
shared between the input documents and the candidate and mark
them as shared (later visualized in colors). In addition, we take
up to 𝑙 · 2 edges of the candidate document, mark them as not
shared (later visualized as dashed lines and not-colored nodes), and
add them to our explanation. More precisely, we only consider the
edges of the candidate core connected to one node shared between
the input and candidate core. These additional edges should help
the user to understand what the candidate documents add as new
information to the shared pattern. This way users simultaneously
see what is shared and what can be expected as new information
in the candidate document.

Kroll et al.

Table 1: Detailed evaluation of our recommendation approach XGPRec.

Dataset Strategy 𝑇𝑑𝑜𝑐 Recall nDCG@10 nDCG@20 P@10 P@20 bpref

PM2020 XGPRec 0.45 ± 0.38𝑠 0.61 0.30 0.30 0.33 0.30 0.30
- BM25 0.44 ± 0.38𝑠 0.61 0.25 0.25 0.28 0.26 0.29
- CoreOverlap ≤ 0.1 ± 0.0𝑠 0.61 0.32 0.31 0.34 0.30 0.31

BM25 Title 1.1s 0.50 0.23 0.23 0.25 0.23 0.25
BM25 Title + Abstract 9.3s 0.57 0.29 0.28 0.31 0.28 0.28

PubMed Rec. - 0.29 0.30 0.30 0.33 0.29 0.17

4 Implementation and Evaluation
We implement our recommendation algorithm by building upon
our [10] discovery system’s code base. The discovery system al-
ready maintains indexes that can be used to estimate the idf scores
for nodes and edges and to perform the retrieval in the first stage
through an inverted concept and an inverted edge index. For in-
stance, an index (1M concepts, 40MB space) maps a concept to the
number of documents in which the concept has been detected. Sup-
pose a user enters a document ID through manual input or via a link
to our system. In that case, we retrieve the document’s data from
the database, perform first-stage retrieval, select the 𝑘 best-scored
documents, and then retrieve the actual candidate document data
for the recommendation. Thus, we load complete document data
only if required. For the BM25 computation, we created a new BM25
index by utilizing PyTerrier [12] (a Python Wrapper around the
well-known Terrier toolkit). For the final XGPRec score, we slightly
prefer graph scores over text scores, i.e., we set 𝑤graph = 0.6 and
𝑤𝑡𝑒𝑥𝑡 = 0.4. We set predicate specificity scores (see tf-idf score for
edges) based on each predicate’s hierarchical level in the three-level
predicate taxonomy (most-specific predicates received a score of
1.0, one level higher 0.5, and the highest level (only associated) 0.25)
defined by the discovery system. We set 𝑘 = 1000.

User Interface. Figure 1 shows a screenshot of our prototype.
In our user interface the user can enter a document ID as an input.
Then, a list of candidate documents is retrieved and ranked via our
recommendation strategy. For each entry of that list, we generate
an explanation and visualize it as shown in Figure 1. Our graph pat-
terns should help users quickly determine the information scent of
the recommendation list – a feature not available in other systems.
For the explanation visualization, we tested different 𝑙 values (no.
of shown edges when generating an explanation) and found a max-
imum number of twelve suitable. So, we generate graph patterns
that fit into the user interface concerning the available space.

4.1 Evaluation
The full evaluation of our system, including three benchmarks
(TRECPrecisionMedicine 2020 (PM2020) [15],TRECGenomics
2005 (Genomics) [4] RELISH [2]), a detailed first stage evaluation,
differences between XGPRec and PubMed, a user study is available
in our technical report [8]. In this paper, we limit our reports to
PM2020: (31 topics/1192 input documents) is a biomedical docu-
ment retrieval test collection that asks for treatment options (drug),
cancer forms (disease), and a gene variant (gene/target). We fol-
low Zhang et al. [21] in selecting relevant articles (judged as 2 -

relevant) per topic as input documents while considering all other
articles belonging to the same topic as candidate documents with
their judgments (2 - relevant/1 - partially relevant/0 - not relevant).

4.2 Recommender Evaluation
We decided to use FSConcept with a flexible cutoff as the first stage
for our recommendation approach because (1) we do not need
an additional index (as the node graph index for FSNode) and (2)
FSConcept is less restrictive than FSNode (it just requires concepts
to be annotated in documents and not that these concepts need
to appear on the document graph). Table 1 shows the results of
our recommendation approach (XGPRec) compared to the PubMed
Recommender. In general, our recommendation strategies took less
than 1s per document for the computation (see 𝑇𝑑𝑜𝑐 in Table 1).
On PM2020, XGPRec achieved comparable nDCG and precision
to the PubMed Recommender but nearly doubled recall. Another
observation was that XGPRec without the CoreOverlap component
achieved the highest scores, i.e., by just using the BM25 scores.
In comparison, using only BM25 on titles or titles and abstracts
of input documents instead of employing a recommender system
achieves good results. The variant using abstracts unsurprisingly
produces higher recall, nDCG, precision and bpref than the one
using titles only. The comparably high execution time makes this
strategy uneligible in a real system. Results produced by BM25 title
are comparable to XGPRec except for the RELISH case.

5 Conclusion
This work extended our graph-based discovery system by an ex-
plainable paper recommendation component for a real-world digital
library document collection. In contrast to many other works, our
method (1) is unsupervised, i.e., we do not require training data
and a library must thus not collect training data to implement a
similar algorithm, and (2) it works on a real, large-scale collection
with 37M documents. We argue that precise, concept-centric infor-
mation needs are common in the biomedical domain, as seen in
a PubMed query log analysis [5], PM2020 [15], our previous user
study [10], or our discovery system’s query log analysis [7]. In brief,
our recommendation strategy XGPRec is fast in handling an exten-
sive collection, offers a comparable performance to PubMed’s real
digital library recommendation system on concept-centric bench-
marks, and provides users with suitable graph explanations. This
research demonstrates how graph-based document representations
allow beneficial exploration in digital libraries.

Building an Explainable Graph-based Biomedical Paper Recommendation System

Acknowledgments
Supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation): PubPharm – the Specialized Information
Service for Pharmacy (Gepris 267140244).

References
[1] Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. 2019. Transparent,

Scrutable and Explainable User Models for Personalized Recommendation. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019.
ACM, 265–274. https://doi.org/10.1145/3331184.3331211

[2] Peter Brown, RELISH Consortium, and Yaoqi Zhou. 2019. Large expert-curated
database for benchmarking document similarity detection in biomedical lit-
erature search. Database J. Biol. Databases Curation 2019 (2019), baz085.
https://doi.org/10.1093/DATABASE/BAZ085

[3] Andrew Collins and Jöran Beel. 2019. Document Embeddings vs. Keyphrases
vs. Terms for Recommender Systems: A Large-Scale Online Evaluation. In 19th
ACM/IEEE Joint Conference on Digital Libraries, JCDL 2019, Champaign, IL, USA,
June 2-6, 2019. IEEE, 130–133. https://doi.org/10.1109/JCDL.2019.00027

[4] William R. Hersh, Aaron M. Cohen, Jianji Yang, Ravi Teja Bhupatiraju, Phoebe M.
Roberts, and Marti A. Hearst. 2005. TREC 2005 Genomics Track Overview. In
Proceedings of the Fourteenth Text REtrieval Conference, TREC 2005, Gaithersburg,
Maryland, USA, November 15-18, 2005 (NIST Special Publication, Vol. 500-266).
National Institute of Standards and Technology (NIST). http://trec.nist.gov/
pubs/trec14/papers/GEO.OVERVIEW.pdf

[5] Jorge R. Herskovic, Len Y. Tanaka, William Hersh, and Elmer V. Bernstam.
2007. A Day in the Life of PubMed: Analysis of a Typical Day’s Query Log.
Journal of the American Medical Informatics Association 14, 2 (03 2007), 212–220.
https://doi.org/10.1197/jamia.M2191

[6] Christin Katharina Kreutz and Ralf Schenkel. 2022. Scientific paper recommen-
dation systems: a literature review of recent publications. Int. J. Digit. Libr. 23, 4
(2022), 335–369. https://doi.org/10.1007/s00799-022-00339-w

[7] Hermann Kroll, Christin Katharina Kreutz, Pascal Sackhoff, and Wolf-Tilo Balke.
2023. Enriching Simple Keyword Queries for Domain-Aware Narrative Retrieval.
In ACM/IEEE Joint Conference on Digital Libraries, JCDL 2023, Santa Fe, NM, USA,
June 26-30, 2023. IEEE, 143–154. https://doi.org/10.1109/JCDL57899.2023.00029

[8] Hermann Kroll, Christin K. Kreutz, Bill Matthias Thang, Philipp Schaer, and
Wolf-Tilo Balke. 2024. Building an Explainable Graph-based Biomedical Paper
Recommendation System (Technical Report). arXiv:identifier tba, PDF available
at [cs.DL] https://github.com/HermannKroll/NarrativeRecommender/

[9] Hermann Kroll, Jan Pirklbauer, and Wolf-Tilo Balke. 2021. A Toolbox for the
Nearly-Unsupervised Construction of Digital Library Knowledge Graphs. In
ACM/IEEE Joint Conference on Digital Libraries, JCDL 2021. IEEE, 21–30. https:
//doi.org/10.1109/JCDL52503.2021.00014

[10] Hermann Kroll, Jan Pirklbauer, Jan-Christoph Kalo, Morris Kunz, Johannes
Ruthmann, and Wolf-Tilo Balke. 2024. A discovery system for narrative query
graphs: entity-interaction-aware document retrieval. Int. J. Digit. Libr. 25, 1
(2024), 3–24. https://doi.org/10.1007/S00799-023-00356-3

[11] Lisa Langnickel, Roman Baum, Johannes Darms, Sumit Madan, and Juliane Fluck.
2021. COVID-19 preVIEW: Semantic Search to Explore COVID-19 Research
Preprints. In Public Health and Informatics. IOS Press, Amsterdam, the Nether-
lands, 78–82. https://doi.org/10.3233/SHTI210124

[12] Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation
in Information Retrieval using PyTerrier. In ICTIR ’20: The 2020 ACM SIGIR
International Conference on the Theory of Information Retrieval, 2020. ACM, 161–
168. https://doi.org/10.1145/3409256.3409829

[13] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, System Demonstrations. The Association
for Computer Linguistics, 55–60. https://doi.org/10.3115/v1/p14-5010

[14] David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen De Veij,
Eloy Félix, María Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał
Nowotka, María Gordillo-Marañón, Fiona Hunter, Laura Junco, Grace Mugum-
bate, Milagros Rodriguez-Lopez, Francis Atkinson, Nicolas Bosc, Chris J Radoux,
Aldo Segura-Cabrera, Anne Hersey, and Andrew R Leach. 2018. ChEMBL: to-
wards direct deposition of bioassay data. Nucleic Acids Research 47, D1 (11 2018),
D930–D940. https://doi.org/10.1093/nar/gky1075

[15] Kirk Roberts, Dina Demner-Fushman, Ellen M. Voorhees, Steven Bedrick, and
William R. Hersh. 2020. Overview of the TREC 2020 Precision Medicine Track.
In Proceedings of the Twenty-Ninth Text REtrieval Conference, TREC 2020, Vir-
tual Event [Gaithersburg, Maryland, USA], November 16-20, 2020 (NIST Special
Publication, Vol. 1266). National Institute of Standards and Technology (NIST).
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.PM.pdf

[16] Harrisen Scells, Shengyao Zhuang, and Guido Zuccon. 2022. Reduce, Reuse, Re-
cycle: Green Information Retrieval Research. In SIGIR ’22: The 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
Madrid, Spain, July 11 - 15, 2022. ACM, 2825–2837. https://doi.org/10.1145/
3477495.3531766

[17] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85. https://doi.org/10.1145/
2629489

[18] Bangchao Wang, Ziyang Weng, and Yanping Wang. 2021. A Novel Paper Recom-
mendation Method Empowered by Knowledge Graph: for Research Beginners.
CoRR abs/2103.08819 (2021). arXiv:2103.08819 https://arxiv.org/abs/2103.08819

[19] Chih-Hsuan Wei, Alexis Allot, Robert Leaman, and Zhiyong Lu. 2019. PubTator
central: automated concept annotation for biomedical full text articles. Nucleic
Acids Research 47, W1 (05 2019), W587–W593. https://doi.org/10.1093/nar/
gkz389

[20] Chih-Hsuan Wei, Hung-Yu Kao, and Zhiyong Lu. 2013. PubTator: a web-based
text mining tool for assisting biocuration. Nucleic Acids Research 41, W1 (05
2013), W518–W522. https://doi.org/10.1093/nar/gkt441

[21] Li Zhang, Wei Lu, Haihua Chen, Yong Huang, and Qikai Cheng. 2022. A com-
parative evaluation of biomedical similar article recommendation. J. Biomed.
Informatics 131 (2022), 104106. https://doi.org/10.1016/J.JBI.2022.104106

https://doi.org/10.1145/3331184.3331211
https://doi.org/10.1093/DATABASE/BAZ085
https://doi.org/10.1109/JCDL.2019.00027
http://trec.nist.gov/pubs/trec14/papers/GEO.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec14/papers/GEO.OVERVIEW.pdf
https://doi.org/10.1197/jamia.M2191
https://doi.org/10.1007/s00799-022-00339-w
https://doi.org/10.1109/JCDL57899.2023.00029
https://arxiv.org/abs/identifier tba, PDF available at
https://arxiv.org/abs/identifier tba, PDF available at
https://github.com/HermannKroll/NarrativeRecommender/
https://doi.org/10.1109/JCDL52503.2021.00014
https://doi.org/10.1109/JCDL52503.2021.00014
https://doi.org/10.1007/S00799-023-00356-3
https://doi.org/10.3233/SHTI210124
https://doi.org/10.1145/3409256.3409829
https://doi.org/10.3115/v1/p14-5010
https://doi.org/10.1093/nar/gky1075
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.PM.pdf
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://arxiv.org/abs/2103.08819
https://arxiv.org/abs/2103.08819
https://doi.org/10.1093/nar/gkz389
https://doi.org/10.1093/nar/gkz389
https://doi.org/10.1093/nar/gkt441
https://doi.org/10.1016/J.JBI.2022.104106

	Abstract
	1 Introduction
	2 Narrative Service – Graph-based Discovery
	3 Graph-based Recommendation and Explanation
	3.1 Scoring Document Graph Components
	3.2 Candidate Retrieval (First Stage)
	3.3 Recommendation (Second Stage)
	3.4 Explanation Generation

	4 Implementation and Evaluation
	4.1 Evaluation
	4.2 Recommender Evaluation

	5 Conclusion
	References

